THE STRUCTURE OF SEPTEDINE

S. K. Usmanova, I. M. Yusupova, B. Tashkhodzhaev, and I. A. Bessonova

UDC 547.944/945

The new diterpene alkaloid septedine has been isolated from the roots of Aconitum septentrionale Koelle. On the basis of spectral characteristics and x-ray structural analysis (diffractometer, CuK_{α} radiation, 1537 reflections, direct method, R = 0.055) it has been established that septedine has an atisine skeleton including an oxazolidine ring with a C14—C20 bridge.

Continuing the separation of the total alkaloids from the roots of wolfbane monkshood *Aconitum septentrionale* Koelle (*A. lycoctonum*) [1], we have isolated from the lappaconitine mother liquors a minor crystalline base with the composition $C_{22}H_{31}NO_3$ (1), mp 160–161°C, readily soluble in chloroform, more sparigly in ethanol, methanol, and acetone.

The IR spectrum of (1) contained absorption bands at 3175 cm^{-1} (OH) and 1710 cm^{-1} (C=O). In its PMR spectrum the following signals were observed (ppm): 4.26 (1H, s, OH, exchangeable with deuterium), 4.07 (1H, t, J = 9 Hz, CH-O), 3.65 and 2.87 (m, 2H each, O-CH₂-CH₂-N), 2.60 and 2.32 (d, 1H each, J = 12 Hz, 2H-19), 1.04 (3H, d, J = 7.5 Hz, CH₃-17), 0.97 (3H, s, CH₃-18). These facts permitted (1) to be assigned to the alkaloids with a diterpene structure including, like coryphine, an oxazolidine ring with a C14-C20 bridge [2] and, probably, a hydroxy group at C7 and a carbonyl group at C15. The base is new and has been called septedine. The structure and stereochemistry of septedine were established unambiguously by x-ray structural analysis.

The spatial structure of septedine is shown in Fig. 1, from which it is possible to see the presence of an oxazolidine ring and the fact that the molecule has a rigid atisine skeleton with a C14–C20 bridge. The methyl group at C16 and the hydroxyl at C7 are α -oriented, and the methyl group at C4 β -oriented.

The conformations of the rings are as follows. The six-membered ring A (the C1–C5 and C10 atoms) has a chair conformation with C₂ symmetry, and the asymmetry parameters according to [3] have ΔC_2 (2-3) = 9.5°, where the C1 and C4 atoms deviate from the plane of the other four by -0.61 and 0.75 Å, respectively. Ring B is present in a distorted boat form with C_S symmetry, as was shown by the degree of asymmetry ΔC_S (9) = 169°. Rings C, D, and E, forming a bicyclo[2.2.2]octane system are present in the boat form with C_S symmetry. It must be mentioned that ring E has a slightly distorted boat form, the asymmetry parameters for E being ΔC_S (13–14) = 16.2°, and for ring C ΔC_S (8–12) = 4.24°, while, finally, for D ΔC_S (8–12) = 4.43°. Heterocycle F also has the boat form with ΔC_S symmetry, the asymmetry parameters being ΔC_S (N–5) = 9.8°, the C4, C10, C19, and C20 atoms lying in one plane (±0.04°) and N and C5 deviating from it by -0.52 and -0.70 Å, respectively. The five-membered ring G has an envelope conformation with C_S symmetry, where ΔC_S (8) = 6.5°, with the C8 atom deviating in the α -direction by -0.80 Å from the plane of the other four atoms.

The linkage of rings A/B is trans (C20C10C5H5 torsional angle - 172.0°C), B/C - cis (C15C8C9H9 torsional angle -75°C).

Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Tashkent, fax (3712) 89 14 75. Translated from Khimiya Prirodnykh Soedinenii, No. 1, pp. 104-108, January-February, 1995. Original article submitted October 17, 1994.

Fig. 1

The boat conformation of ring B in septedine is apparently stabilized by an O1—H…N hydrogen bond (O1…N distance 2.80 Å, N…H 1.78 Å, O1—H…N angle 175°), since in the related compound coryphine it has the chair form, and in spirasine VI [4], with a carbonyl group at C6, this ring assumes the sofa form with the deviation of the C9 atom in α -direction by 0.84 Å. It follows from what has been said above that ring B in the atisine alkaloids assumes all the canonical forms, depending on the nature and position of substituents.

The bond lengths and valence angles are given in Table 1. The lengths of the ordinary $C_{sp}3-C_{sp}3$ bonds vary within the range of 1.51-1.56 Å; however, within the 3σ limits of error they agree with the generally accepted value of 1.54 Å, while the scatter in the lengths of the bonds with the heteroatoms is small and their values are close to the standard ones [5]. The valence angles were determined with an error of 0.5°.

EXPERIMENTAL

The individuality of the alkaloids was checked by TLC on plates with KSK 63 nm alumina or KSK 80 nm silica gel in the solvent systems ether, benzene—acetone (5:1) and (20:1), and chloroform—methanol (20:1), respectively [sic].

IR, mass, and PMR spectra were obtained on UR-20 (KBr), MKh-1321, MS 3301, and BS-567A, 100 MHz (δ scale, CDCl₃, 0 – TMS) instruments.

Isolation of Septedine. The ethanolic mother solution of the total alkaloids of *Aconitum sepentrionale* after the separation of lappaconitine (the basis of allapinin) was evaporated. The residue (366 g) was dissolved in 2% sulfuric acid (2 liters), and the solution was filtered and extracted with chloroform (2×1 liter) (fraction A). The acid solution was made alkaline fractionally with sodium carbonate to pH 7 and 10, and the alkaloids were extracted with chloroform. Distillation of the chloroform yielded mixtures of alkaloids (56, 64, and 8 g, respectively).

The alkaloids were extracted from chloroform extracts (A) with 5% acid, and the extract was made alkaline with sodium carbonate and was extracted with chloroform, the distillation of which gave 158 g of alkaloids. Part of this mixture (66 g) was chromatographed on alumina (KSK, 90-130 nm, elution with benzene). The first benzene eluates were combined (43 g) and rechromatographed on alumina (1300 g), with elution by hexane—ether (5:2). Fractions with a volume of 120 ml were collected. Fraction 2 gave a substance (0.09 g) which was crystallized from acetone, mp 160-161°C, yield 50 mg. Leuconine, mp 195-197°C [6], and anthranoyllycoctine, mp 153-155°C [1], were isolated from the later eluates.

Septedine, mp 160-161°C (from acetone). IR spectrum (cm⁻¹): 3175, 2960, 2925, 2892, 1710, 1460, 1450, 1370, 1340, 1315, 1290, 1280, 1260, 1230, 1210, 1165, 1120, 1100, 1080, 1060, 1030, 1010, 990, 960. Mass spectrum: 357 (M⁺, 3.1%), 356 (2.8%), 340 (3.6%), 329 (100%), 328 (3.3%), 314 (6.9%), 312 (10.8%), 300 (42.0%), 286 (40.0%), 274 (10.9%). MCBP: estimated for C₂₂H₃₁NO₃ (M⁺) 357.23038; found 357.22810.

X-Ray Structural Analysis of Septedine. The space group and the parameters of the unit cell were determined on a Syntex P2₁ automatic four-circle diffractometer (CuK_{α} radiation, graphite monochromator, $\theta/2\theta$ scanning I > 2 σ (1)): a = 7.451(1), b = 10.520 (2), c = 22.545 (10) Å. Space group P2₁2₁2₁, Z = 4, d = 1.344 g/cm³. In the calculations we used 1537 reflections. The structure was interpreted by the direct method using the SHELXS-86 program [7] and was refined by

Bond		Angle	<u> </u>	Angle	<u>ت</u>
C1-C2	1.519(9)	C2C1C10	113.3(5)	C1C2C3	113.2(6)
C2C3	1.530(10)	C2C3C4	113.2(6)	C3C4C5	106.8(5)
C4-C5	1.556(9)	C3C4C18	107.9(6)	C5C4C18	111.5(6)
C4-C19	1.544(9)	C3C4C19	109.0(6)	C5C4C19	110.4(5)
C5-C16	1.543(9)	C18C4C19	11.0(6)	C4C5C6	118.6(5)
C7-C8	1.550(9)	C4C5C10	109.0(5)	C6C5C10	113.8(5)
C8C9	1.548(8)	C5C6C7	118.9(5)	C6C7C8	113.1(5)
C8-C15	1.524(8)	C6C7O1	110.9(5)	C8C7O1	112.2(5)
C9-C11	1.561(9)	C7C8C9	112.1(5)	C7C8C14	i 13.8(5)
C11-C12	1.522(9)	C9C8C14	97.8(5)	C7C8C15	110.2(5)
C12-C16	1.5515(9)	C9C8C15	114.2(5)	-C14C8C15	108.2(5)
C14-C20	1.556(8)	C8C9C10	101.5(5)	C8C9C11	110.2(5)
C15O2	1.214(8)	C10C9C11	115.0(5)	C1C10C5	107.7(5)
C19N	1.489(8)	C1C10C9	114.8(5)	C5C10C9	106.8(5)
C20-N	1.470(8)	C1C10C20	114.6(5)	C5C10C20	109.9(5)
C21-N	1.482(8)	C9C10C20	102.6(5)	C9C11C12	109.9(5)
C1-C10	1.531(8)	C11C12C13	108.8(5)	C11C12C16	108.0(5)
C3C4	1.530(10)	C13C12C16	109.5(5)	C12C13C14	111.4(5)
C4-C18	1.520(10)	C8C14C13	109.1(5)	C8C14C20	101.4(5)
C5-C6	1.517(9)	C13C14C20	114.1(5)	C8C15C16	114.0(6)
C6C7	1.530(9)	C8C15O2	123.2(6)	C16C15O2	122.7(6)
C7O1	1.440(8)	C12C16C15	108.3(5)	C12C16C17	115.0(6)
C8-C14	1.556(9)	C15C16C17	11.4(6)	C4C19N	115.1(5)
C9-C10	1.541(8)	C10C20C14	106.0(5)	C10C20O3	111.1(5)
C10-C20	1.566(8)	C14C20O3	112.3(5)	C10C20N	114.5(5)
C12-C13	1.522(9)	C14C20N	108.0(5)	O3C20N	105.1(5)
C13-C14	1.531(9)	C22C21N	106.0(5)	C21C22O3	105.3(5)
C15-C16	1.500(10)	C20O3C22	107.0(5)	C19NC20	114.2(5)
·C16-C17	1.549(9)	C19NC21	110.7(5)	C20NC21	101.6(5)
C20O3	1.440(7)		1		
C21-C22	1.510(10)				
C22-O3	1 432(8)				

TABLE 1. Bond Lengths r (Å) and Valence Angles (degrees) in Structure (1)

TABLE 2. Coordinates (× 10⁴) of the Nonhydrogen Atoms and Temperature Factors U_{eq} (Å² × 10³) in Structure (1)

Atom	- x	y y	2	U _{eq}
C1	-434(9)	5286(6)	2139(3)	34(2)
C2	-528(10)	6346(7)	2596(3)	47(3)
C3	-2447(10)	6708(7)	2763(3)	47(2)
C4	-3656(9)	6929(7)	2223(3)	38(2)
C5	-3595(8)	5690(6)	1847(3)	33(2)
C6	-5049(9)	5472(7)	1387(3)	41(2)
C7	-4541(8)	5487(6)	730(3)	31(2)
C8	-2590(9)	5040(6)	614(3)	29(2)
C9	-1754(8)	4388(6)	1164(3)	28(2)
C10	-1674(8)	5501(6)	1607(3)	26(2)
C11	102(10)	3794(6)	1001(3)	41(2)
C12	625(9)	4174(6)	374(3)	38(2)
C13	5 66(9)	5616(6)	325(3)	41(2)
C14	-1217(8)	6146(6)	554(3)	30(2)
C15	-2507(10)	4244(5)	49(3)	33(2)
C16	-732(9)	3600(6)	-49(3)	38(2)
C17	-184(11)	3631(8)	-712(3)	62(3)
C18	-5544(10)	7203(8)	2448(3)	54(3)
C19	-2918(9)	8062(6)	1862(3)	39(2)
C20	-1140(8)	6650(6)	1203(3)	27(2)
C21	-1204(9)	8780(6)	1001(3)	37(2)
C22	715(9)	8403(6)	1135(3)	43(2)
01	-4899(6)	6714(4)	471(2)	44(2)
O2	-3762(7)	4131(4)	-290(2)	47(2)
03	609(6)	7130(4)	1357(2)	33(1)
N	-2345(7)	7752(4)	1246(2)	29(2)

the SHELX-76 program [8] in the anisotropic approximation. The theoretically calculated positions of the hydrogen atoms were included in the calculation, the hydrogen atom of the hydroxy group being found experimentally. The final residuals were R = 0.055 and $R_{\mu\nu} = 0.064$. All the calculations were performed on a personal computer of the IBM PC/AT type. The coordinates of the nonhydrogen atoms of the molecule are given in Table 2.

REFERENCES

- 1. S. K. Usmanova, V. A. Tel'nov, and N. D. Abdullaev, Khim. Prir. Soedin., 412 (1993).
- 2. I. M. Yusupova, I. A. Bessonova, B. Tashkhodzhaev, M. S. Yunusov, M. R. Yagudaev, and Z. M. Vaisov, Khim. Prir. Soedin., 396 (1991).
- 3. W. L. Duax and D. A. Norton, Atlas of Steroid Structure, IFI/Plenum, New York, Vol. 1 (1975), p. 1354.
- 4. Fang Sun, Xiao-Tian Liang, Dequan Yu, Chang-Fu Xu, and J. Clardy, Tetrahedron Lett., 275 (1986).
- 5. F. N. Allen, O. Kennard, and D. G. Watson, J. Chem. Soc., Perkin Trans. II, No. 12, S1-S19 (1987).
- 6. V. A. Tel'nov and S. K. Usmanova, Khim. Prir. Soedin., 539 (1992).
- 7. G. M. Sheldrick, Acta Cryst., A46, 467 (1990).
- 8. G. M. Sheldrick, SHELX-76: Program for Crystal Structure Determination, Cambridge University Press (1976).